Thursday, October 25, 2012

Satellite images tell tales of changing biodiversity

ScienceDaily (Oct. 24, 2012) ? Analysis of texture differences in satellite images may be an effective way to monitor changes in vegetation, soil and water patterns over time, with potential implications for measuring biodiversity as well, according to new research published Oct. 24 by Matteo Convertino from the University of Florida and colleagues in the open access journal PLOS ONE.

The authors designed statistical models to estimate two aspects of biodiversity in satellite images: the number of species in a given region, or 'species richness', and the rate at which species entered or were removed from the ecosystem, a parameter termed 'species turnover'.

They tested their models on data gathered over 28 years in a water conservation area in the Florida Everglades and compared their results to previous reports from the region. They found that their models were nearly 100% accurate when predicting species turnover; conventional methods only have 85% accuracy.

According to the authors, their automated method using satellite images could help improve the efficiency and decrease the cost of campaigns that monitor biodiversity and guide policy and conservation decisions. Convertino says, "Texture-based statistical image analysis is a promising method for quantifying seasonal differences and, consequently, the degree to which vegetation, soil, and water patterns vary as a function of natural and anthropic stressors. The application of the presented model to other fields and scales of analysis of ecosystems is a promising research direction.''

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Public Library of Science, via EurekAlert!, a service of AAAS.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Matteo Convertino, Rami S. Mangoubi, Igor Linkov, Nathan C. Lowry, Mukund Desai. Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery. PLoS ONE, 2012; 7 (10): e46616 DOI: 10.1371/journal.pone.0046616

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

Source: http://feeds.sciencedaily.com/~r/sciencedaily/~3/3KFPWiouyDQ/121024175355.htm

missouri primary minnesota caucus knowshon moreno knowshon moreno sovereign citizen komen chrome for android

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.